Ollama Deep Research MCP Servers
Implement Ollama-powered deep research capabilities in MCP servers for document analysis, citation management, and research synthesis.
Ollama Deep Research MCP Servers
Overview
Ollama Deep Research MCP servers provide interfaces for LLMs to interact with research tools, document analysis, and knowledge extraction capabilities. These servers enable AI models to perform deep research tasks while maintaining efficiency and accuracy.
Core Components
Research Server
class OllamaResearchServer extends MCPServer {
capabilities = {
tools: {
'analyzeDocument': async (params) => {
// Analyze research documents
},
'extractCitations': async (params) => {
// Extract and validate citations
},
'synthesizeFindings': async (params) => {
// Summarize research findings
}
},
resources: {
'knowledgeBase': async () => {
// Access research database
}
}
}
}
Implementation Examples
Document Processing
class DocumentProcessor extends MCPServer {
async initialize() {
return {
tools: {
'parseDocument': this.handleDocumentParsing,
'crossReference': this.performCrossReferencing,
'generateSummary': this.createResearchSummary
}
};
}
private async handleDocumentParsing({ document, format }) {
// Implement document parsing logic
}
}
Configuration Options
ollama:
models:
- name: "research-assistant"
context: 8192
- name: "citation-analyzer"
context: 4096
research:
maxDepth: 3
citationStyle: "APA"
languageSupport: ["EN", "DE", "FR"]
Security Guidelines
-
Data Protection
- Document encryption
- Source verification
- Access logging
-
Citation Integrity
- Source validation
- Reference checking
- Plagiarism detection
Common Use Cases
-
Literature Review
- Systematic review
- Meta-analysis
- Bibliography management
-
Knowledge Extraction
- Key concept identification
- Relationship mapping
- Trend analysis
-
Research Synthesis
- Finding aggregation
- Gap analysis
- Recommendation generation
Best Practices
-
Document Processing
- Format handling
- Metadata extraction
- Version control
-
Knowledge Management
- Topic organization
- Reference linking
- Citation tracking
Testing Strategies
-
Analysis Testing
- Content extraction
- Citation validation
- Summary accuracy
-
Integration Testing
- Database connectivity
- API compatibility
- Performance benchmarking
Related Articles
Dafny Verifier and MCP
This section explores how the Dafny program verifier can leverage the Model Context Protocol (MCP) to enhance its functionality and integration with other verification tools and services.
Ansible Automation Platform MCP Servers
Ansible Automation Platform MCP servers provide interfaces for LLMs to interact with Ansible's automation capabilities. These servers enable AI models to manage infrastructure automation, configuration management, and application deployment through Ansible's declarative approach.
Bankless MCP Server Guide
A comprehensive guide to integrating Bankless with MCP servers, enabling AI models to interact with decentralized finance, blockchain, and web3 technologies through standardized interfaces.