Sentry Integration MCP Servers
Sentry MCP servers provide interfaces for LLMs to interact with Sentry's error monitoring and performance tracking platform. These servers enable AI models to analyze errors, track performance issues, and assist in debugging applications.
Core Components
Error Monitoring Server
class SentryServer extends MCPServer {
capabilities = {
tools: {
'queryIssues': async (params) => {
// Query and analyze error issues
},
'createAlert': async (params) => {
// Create new alert rules
},
'resolveIssue': async (params) => {
// Mark issues as resolved
}
},
resources: {
'errorStats': async () => {
// Get error statistics
}
}
}
}
Implementation Examples
Error Analysis Integration
class ErrorAnalyzer extends MCPServer {
async initialize() {
return {
tools: {
'analyzeStackTrace': this.handleStackTrace,
'suggestFixes': this.generateFixes,
'trackPerformance': this.monitorPerformance
}
};
}
async handleStackTrace({ error, context }) {
// Implement stack trace analysis
}
}
Configuration Options
sentry:
dsn: "https://[email protected]/xxxxx"
environment: "production"
sampleRate: 1.0
monitoring:
tracesSampleRate: 0.2
enablePerformance: true
errorThreshold: 100
Security Best Practices
-
Authentication
- API token management
- Role-based access
- Scope limitations
-
Data Privacy
- PII scrubbing
- Data retention
- Access controls
Common Use Cases
-
Error Detection
- Real-time monitoring
- Pattern recognition
- Impact assessment
-
Performance Tracking
- Transaction monitoring
- Resource utilization
- Bottleneck detection
-
Issue Management
- Automatic categorization
- Priority assignment
- Resolution tracking
Integration Guidelines
-
Setup Process
- SDK initialization
- Environment configuration
- Release tracking
-
Data Collection
- Error capture
- Context gathering
- User feedback
Best Practices
-
Error Reporting
- Contextual information
- Environment details
- User impact
-
Performance Monitoring
- Custom metrics
- Transaction traces
- Resource monitoring
Testing Strategies
-
Error Simulation
- Test different error types
- Verify capture process
- Validate context data
-
Performance Testing
- Load testing
- Trace verification
- Alert triggering
Related Articles
Ethereum RPC MCP Servers
Ethereum RPC MCP Servers
Pulumi Cloud Development MCP Servers
Pulumi Cloud Development MCP servers enable LLMs to interact with cloud infrastructure using Pulumi's infrastructure as code platform. These servers provide capabilities for managing cloud resources across multiple providers while maintaining security and compliance.
Filesystem Storage for MCP Servers
Learn how to implement local filesystem storage for Model Context Protocol servers