Sentry Integration MCP Servers

Sentry MCP servers provide interfaces for LLMs to interact with Sentry's error monitoring and performance tracking platform. These servers enable AI models to analyze errors, track performance issues, and assist in debugging applications.

Core Components

Error Monitoring Server

class SentryServer extends MCPServer {
  capabilities = {
    tools: {
      'queryIssues': async (params) => {
        // Query and analyze error issues
      },
      'createAlert': async (params) => {
        // Create new alert rules
      },
      'resolveIssue': async (params) => {
        // Mark issues as resolved
      }
    },
    resources: {
      'errorStats': async () => {
        // Get error statistics
      }
    }
  }
}

Implementation Examples

Error Analysis Integration

class ErrorAnalyzer extends MCPServer {
  async initialize() {
    return {
      tools: {
        'analyzeStackTrace': this.handleStackTrace,
        'suggestFixes': this.generateFixes,
        'trackPerformance': this.monitorPerformance
      }
    };
  }

  async handleStackTrace({ error, context }) {
    // Implement stack trace analysis
  }
}

Configuration Options

sentry:
  dsn: "https://[email protected]/xxxxx"
  environment: "production"
  sampleRate: 1.0
  
monitoring:
  tracesSampleRate: 0.2
  enablePerformance: true
  errorThreshold: 100

Security Best Practices

  1. Authentication

    • API token management
    • Role-based access
    • Scope limitations
  2. Data Privacy

    • PII scrubbing
    • Data retention
    • Access controls

Common Use Cases

  1. Error Detection

    • Real-time monitoring
    • Pattern recognition
    • Impact assessment
  2. Performance Tracking

    • Transaction monitoring
    • Resource utilization
    • Bottleneck detection
  3. Issue Management

    • Automatic categorization
    • Priority assignment
    • Resolution tracking

Integration Guidelines

  1. Setup Process

    • SDK initialization
    • Environment configuration
    • Release tracking
  2. Data Collection

    • Error capture
    • Context gathering
    • User feedback

Best Practices

  1. Error Reporting

    • Contextual information
    • Environment details
    • User impact
  2. Performance Monitoring

    • Custom metrics
    • Transaction traces
    • Resource monitoring

Testing Strategies

  1. Error Simulation

    • Test different error types
    • Verify capture process
    • Validate context data
  2. Performance Testing

    • Load testing
    • Trace verification
    • Alert triggering