Google Drive Storage for MCP Servers
Learn how to implement Google Drive storage integration for Model Context Protocol servers
Google Drive Storage Integration for MCP
Overview
Google Drive storage provides a reliable cloud-based solution for storing and managing model context data in MCP servers. This guide explains how to integrate Google Drive API with your MCP server implementation.
Prerequisites
- Google Cloud Platform account
- Google Drive API enabled
- Service account with appropriate permissions
- Node.js 18 or higher
- MCP server base implementation
Setting Up Google Drive API
- Create a new project in Google Cloud Console
- Enable the Google Drive API
- Create service account credentials
- Download the credentials JSON file
Installation
npm install @google-cloud/storage googleapis
Implementation
import { google } from 'googleapis';
import { JWT } from 'google-auth-library';
class GoogleDriveStorage implements MCPStorageProvider {
private drive: any;
private folderId: string;
constructor(credentials: any, folderId: string) {
const auth = new JWT({
email: credentials.client_email,
key: credentials.private_key,
scopes: ['https://www.googleapis.com/auth/drive']
});
this.drive = google.drive({ version: 'v3', auth });
this.folderId = folderId;
}
async storeContext(contextId: string, data: Buffer): Promise<void> {
await this.drive.files.create({
requestBody: {
name: `${contextId}.ctx`,
parents: [this.folderId],
mimeType: 'application/octet-stream'
},
media: {
mimeType: 'application/octet-stream',
body: data
}
});
}
async retrieveContext(contextId: string): Promise<Buffer> {
const files = await this.drive.files.list({
q: `name='${contextId}.ctx' and '${this.folderId}' in parents`,
fields: 'files(id)'
});
if (!files.data.files.length) {
throw new Error('Context not found');
}
const response = await this.drive.files.get({
fileId: files.data.files[0].id,
alt: 'media'
}, { responseType: 'arraybuffer' });
return Buffer.from(response.data);
}
}
Configuration
const storage = new GoogleDriveStorage({
client_email: process.env.GOOGLE_CLIENT_EMAIL,
private_key: process.env.GOOGLE_PRIVATE_KEY
}, process.env.GOOGLE_DRIVE_FOLDER_ID);
const mcpServer = new MCPServer({
storage
});
Error Handling
try {
await storage.storeContext('model-123', contextBuffer);
} catch (error) {
if (error.code === 404) {
console.error('Folder not found');
} else if (error.code === 403) {
console.error('Permission denied');
} else {
console.error('Storage error:', error);
}
}
Best Practices
- Folder Structure: Organize contexts in separate folders based on model types or versions
- Backup Strategy: Implement regular backups of critical context data
- Rate Limiting: Handle Google Drive API quotas and implement rate limiting
- Caching: Consider implementing a local cache for frequently accessed contexts
Security Considerations
- Use service accounts with minimal required permissions
- Store credentials securely using environment variables
- Implement encryption for sensitive context data
- Regular audit of stored contexts and access patterns
Performance Optimization
- Implement batch operations for multiple contexts
- Use compression for large context files
- Monitor API usage and implement retries with exponential backoff
Monitoring
class MonitoredGoogleDriveStorage extends GoogleDriveStorage {
async storeContext(contextId: string, data: Buffer): Promise<void> {
const startTime = Date.now();
try {
await super.storeContext(contextId, data);
metrics.recordStorageOperation('store', Date.now() - startTime);
} catch (error) {
metrics.recordStorageError('store');
throw error;
}
}
}
Testing
describe('GoogleDriveStorage', () => {
it('should store and retrieve context', async () => {
const storage = new GoogleDriveStorage(credentials, folderId);
const contextId = 'test-123';
const testData = Buffer.from('test data');
await storage.storeContext(contextId, testData);
const retrieved = await storage.retrieveContext(contextId);
expect(retrieved.toString()).toBe(testData.toString());
});
});
Resources
Related Articles
Smartsheet MCP Server Guide
A comprehensive guide to integrating Smartsheet with MCP servers, enabling AI models to interact with project management, workflow automation, and collaborative spreadsheets through standardized interfaces.
Spring Application Advisor and MCP
Spring Application Advisor and MCP
Autumn MCP Server Guide
A comprehensive guide to integrating Autumn with MCP servers, enabling AI models to interact with productivity tracking, time management, and workflow optimization through standardized interfaces.