MongoDB Storage for MCP Servers
Learn how to implement MongoDB storage integration for Model Context Protocol servers
MongoDB Storage Integration for MCP
Overview
MongoDB provides a flexible document-based storage solution for MCP servers, particularly well-suited for storing model contexts and related metadata. This guide covers implementing MongoDB as a storage provider for your MCP server.
Prerequisites
- MongoDB 6.0 or higher
- Node.js 18 or higher
- MCP server base implementation
- MongoDB Compass (optional, for visualization)
Implementation
// filepath: /path/to/MongoDBStorage.ts
import { MongoClient, Collection } from 'mongodb';
interface ContextDocument {
_id: string;
data: Buffer;
metadata?: Record<string, any>;
createdAt: Date;
updatedAt: Date;
}
class MongoDBStorage implements MCPStorageProvider {
private collection: Collection<ContextDocument>;
constructor(uri: string, dbName: string) {
const client = new MongoClient(uri);
this.collection = client.db(dbName).collection('contexts');
}
async initialize(): Promise<void> {
await this.collection.createIndex({ _id: 1 });
await this.collection.createIndex({ updatedAt: 1 });
}
async storeContext(contextId: string, data: Buffer): Promise<void> {
await this.collection.updateOne(
{ _id: contextId },
{
$set: {
data,
updatedAt: new Date()
},
$setOnInsert: {
createdAt: new Date()
}
},
{ upsert: true }
);
}
async retrieveContext(contextId: string): Promise<Buffer> {
const doc = await this.collection.findOne({ _id: contextId });
if (!doc) {
throw new Error('Context not found');
}
return doc.data;
}
}
Related Articles
Blender Integration
This guide covers the integration of Blender with MCP servers, enabling AI models to process various media types and interact with content management systems efficiently.
Languine MCP Servers
Languine MCP Servers
Neon in MCP
Neon is a fully managed serverless PostgreSQL platform designed for modern applications. Its features make it a valuable asset in the Model Context Protocol (MCP), providing scalable and efficient data storage and retrieval for model-driven workflows.