Retrieval Augmented Thinking MCP Servers
Learn how to implement Retrieval Augmented Generation (RAG) in MCP servers to enhance AI responses with relevant information from external knowledge bases.
Retrieval Augmented Thinking MCP Servers
Overview
Retrieval Augmented Thinking MCP servers provide interfaces for LLMs to enhance their responses with relevant information retrieved from external knowledge bases. These servers enable AI models to combine their general knowledge with specific, accurate information from trusted sources.
Core Components
Knowledge Retrieval Server
class RAGServer extends MCPServer {
capabilities = {
tools: {
'queryKnowledge': async (params) => {
// Query vector database
},
'updateContext': async (params) => {
// Update context with retrieved info
},
'rankRelevance': async (params) => {
// Rank retrieved passages
}
},
resources: {
'knowledgeBase': async () => {
// Access knowledge sources
}
}
}
}
Implementation Examples
Context Management
class ContextManager extends MCPServer {
async initialize() {
return {
tools: {
'embedDocument': this.handleEmbedding,
'searchSimilar': this.findSimilarContent,
'mergeContext': this.combineInformation
}
};
}
private async handleEmbedding({ content, metadata }) {
// Implement document embedding
}
}
Configuration Options
retrieval:
vectorStore: "pinecone" # or milvus, qdrant
embeddingModel: "openai"
contextWindow: 4096
augmentation:
maxResults: 5
minRelevance: 0.75
sourcePriority: ["docs", "kb", "web"]
Security Guidelines
-
Data Access
- Source verification
- Access control
- Usage tracking
-
Content Filtering
- Relevance checking
- Source validation
- Information freshness
Common Use Cases
-
Knowledge Enhancement
- Fact verification
- Source citation
- Context expansion
-
Information Retrieval
- Document search
- Semantic matching
- Multi-source fusion
-
Content Generation
- Research assistance
- Documentation generation
- Answer synthesis
Best Practices
-
Knowledge Management
- Index maintenance
- Content updates
- Version control
-
Query Optimization
- Search strategies
- Result ranking
- Context windowing
Testing Strategies
-
Retrieval Testing
- Search accuracy
- Response relevance
- Context quality
-
Integration Testing
- Vector store connectivity
- Embedding generation
- Result merging
Related Articles
Neon in MCP
Neon is a fully managed serverless PostgreSQL platform designed for modern applications. Its features make it a valuable asset in the Model Context Protocol (MCP), providing scalable and efficient data storage and retrieval for model-driven workflows.
Content and Media MCP Servers
Content and Media MCP servers provide standardized interfaces for LLMs to interact with content management systems, media processing tools, and digital asset management platforms. These servers enable AI models to handle various types of media while ensuring quality and performance.
Ethereum RPC MCP Servers
Ethereum RPC MCP Servers