Confluence MCP Servers
Confluence MCP servers provide interfaces for LLMs to interact with Atlassian Confluence workspaces. These servers enable AI models to manage documentation, collaborate on content, and automate knowledge management tasks.
Core Components
Content Management Server
class ConfluenceServer extends MCPServer {
capabilities = {
tools: {
'createPage': async (params) => {
// Create new confluence pages
},
'updateContent': async (params) => {
// Update existing content
},
'manageMacros': async (params) => {
// Handle confluence macros
}
},
resources: {
'spaceContent': async () => {
// Get space content structure
}
}
}
}
Implementation Examples
Space Management
class SpaceManager extends MCPServer {
async initialize() {
return {
tools: {
'organizePage': this.handlePageHierarchy,
'managePermissions': this.updateSpacePermissions,
'handleAttachments': this.processAttachments
}
};
}
private async handlePageHierarchy({ pageId, parentId }) {
// Implement page organization logic
}
}
Configuration Options
confluence:
baseUrl: "https://your-domain.atlassian.net"
spaceKey: "DOCS"
apiVersion: "v2"
content:
defaultTemplate: "documentation"
autoSave: true
versioningEnabled: true
Security Guidelines
-
Access Management
- API token security
- Space restrictions
- User permissions
-
Content Protection
- Version control
- Page restrictions
- Backup policies
Common Use Cases
-
Documentation
- Technical docs
- Process guides
- Knowledge bases
-
Team Collaboration
- Meeting notes
- Project plans
- Team spaces
-
Content Automation
- Template generation
- Content migration
- Bulk updates
Best Practices
-
Content Organization
- Structured hierarchy
- Consistent templates
- Clear labeling
-
Performance
- Batch operations
- Cache management
- Resource optimization
Testing Strategies
-
Content Management
- Page creation
- Update validation
- Permission checks
-
Integration Testing
- API compatibility
- Macro handling
- Attachment processing
Related Articles
Screen Shot Server MCP Servers
Screen Shot Server MCP Servers
Amazon Bedrock Nova
Guide to integrating Amazon Bedrock Nova with MCP servers, enabling AI models to interact with cloud-based infrastructure, data analytics, and machine learning services through standardized interfaces.
Multi-LLM API Gateway
A unified API gateway solution for managing multiple Language Learning Models (LLMs). Streamline your AI integrations by routing requests to different LLM providers through a single endpoint, with features for load balancing, fallback handling, and cost optimization.