Neo4j Storage for MCP Servers
Learn how to implement Neo4j graph database storage for Model Context Protocol servers
Overview
Neo4j provides a powerful graph database solution for storing and querying model contexts with complex relationships. This implementation allows MCP servers to leverage graph-based storage for context management.
Prerequisites
- Neo4j 5.0 or higher
- Node.js 18 or higher
- MCP server base implementation
- Neo4j Desktop (optional, for visualization)
Installation
npm install neo4j-driver
Implementation
// filepath: /path/to/Neo4jStorage.ts
import neo4j, { Driver, Session } from 'neo4j-driver';
class Neo4jStorage implements MCPStorageProvider {
private driver: Driver;
constructor(uri: string, username: string, password: string) {
this.driver = neo4j.driver(uri, neo4j.auth.basic(username, password));
}
async initialize(): Promise<void> {
const session = this.driver.session();
try {
// Create constraints
await session.run(`
CREATE CONSTRAINT context_id IF NOT EXISTS
FOR (c:Context) REQUIRE c.id IS UNIQUE
`);
} finally {
await session.close();
}
}
async storeContext(contextId: string, data: Buffer): Promise<void> {
const session = this.driver.session();
try {
await session.run(`
MERGE (c:Context {id: $contextId})
SET c.data = $data,
c.updatedAt = datetime(),
c.size = $size
`, {
contextId,
data: data.toString('base64'),
size: data.length
});
} finally {
await session.close();
}
}
async retrieveContext(contextId: string): Promise<Buffer> {
const session = this.driver.session();
try {
const result = await session.run(`
MATCH (c:Context {id: $contextId})
RETURN c.data
`, { contextId });
if (result.records.length === 0) {
throw new Error('Context not found');
}
return Buffer.from(result.records[0].get('c.data'), 'base64');
} finally {
await session.close();
}
}
}
Related Articles
MongoDB Storage for MCP Servers
Learn how to implement MongoDB storage integration for Model Context Protocol servers
Development Tools and DevOps MCP Servers
The Development Tools & DevOps category provides integration with essential development tools, version control systems, and DevOps platforms to streamline your development workflow and improve productivity.
Sequential Thinking in AI Development
Master the art of sequential thinking in AI development - a step-by-step approach to breaking down complex problems into manageable components. Learn how to improve problem-solving skills, design better algorithms, and create more efficient AI solutions through structured thinking patterns.