Confluence MCP Server
Confluence MCP servers provide interfaces for LLMs to interact with Atlassian Confluence workspaces. These servers enable AI models to manage documentation, collaborate on content, and automate knowledge management tasks.
Overview
The MCP Confluence Server connects AI systems (LLMs) directly to Atlassian Confluence, enabling them to interact with spaces, pages, and documentation. It provides a standard way to access and manage knowledge within Confluence.
Developed by:
Developed by Aashari
Key Features
Knowledge Base Access
Ask AI about your documentation and get instant answers
Advanced Search
Search across all spaces and pages using CQL (Confluence Query Language)
Content Management
Retrieve, create, and update Confluence pages
Discussion Review
Access and review comments on pages
Available Tools
Quick Reference
| Tool | Purpose | Category |
|---|---|---|
list_spaces | List all Confluence spaces | Discovery |
get_space | Get details about a specific space | Read |
search_confluence | Search for pages using CQL | Discovery |
get_page_content | Get the content of a specific page | Read |
get_page_comments | Get comments on a specific page | Read |
Detailed Usage
list_spaces▶
Lists all Confluence spaces accessible by the configured credentials.
use_mcp_tool({
server_name: "confluence",
tool_name: "list_spaces",
arguments: {}
});
Returns a list of space objects with keys and names.
get_space▶
Retrieves detailed information about a specific Confluence space.
use_mcp_tool({
server_name: "confluence",
tool_name: "get_space",
arguments: {
space_key: "DEV"
}
});
Requires space_key. Returns space details or an error if not found.
search_confluence▶
Searches Confluence content using a CQL query.
use_mcp_tool({
server_name: "confluence",
tool_name: "search_confluence",
arguments: {
query: "API documentation"
}
});
Returns a list of pages matching the query.
get_page_content▶
Retrieves the content of a specific Confluence page.
use_mcp_tool({
server_name: "confluence",
tool_name: "get_page_content",
arguments: {
page_id: "123456"
}
});
Requires page_id. Returns the page content in Markdown format.
get_page_comments▶
Retrieves comments associated with a specific Confluence page.
use_mcp_tool({
server_name: "confluence",
tool_name: "get_page_comments",
arguments: {
page_id: "123456"
}
});
Requires page_id. Returns a list of comments.
Installation
{
"mcpServers": {
"confluence": {
"command": "npx",
"args": [
"-y",
"@aashari/mcp-server-atlassian-confluence"
],
"env": {
"ATLASSIAN_SITE_NAME": "your-company",
"ATLASSIAN_USER_EMAIL": "[email protected]",
"ATLASSIAN_API_TOKEN": "your_api_token"
}
}
}
}
Confluence Credentials:
Replace your-company, [email protected], and your_api_token with your actual Confluence site name, email, and API token.
Common Use Cases
1. Summarize Documentation
Ask AI to summarize complex Confluence pages or spaces.
// Summarize a specific Confluence page
use_mcp_tool({
server_name: "confluence",
tool_name: "get_page_content",
arguments: {
page_id: "123456"
}
});
// AI can then process the content to generate a summary
2. Find Information
Quickly find relevant information across your Confluence knowledge base.
// Search for pages related to "security best practices"
use_mcp_tool({
server_name: "confluence",
tool_name: "search_confluence",
arguments: {
query: "security best practices"
}
});
3. Review Team Discussions
Access and review comments on important documents.
// Get comments on an architecture document
use_mcp_tool({
server_name: "confluence",
tool_name: "get_page_comments",
arguments: {
page_id: "789012"
}
});
4. Content Creation
Automate the creation of new Confluence pages based on templates or external data.
// Example: Create a new page (this tool is not directly available in the listed tools,
// but can be inferred as a potential capability for a Confluence MCP server)
// This would typically involve a 'create_page' tool if implemented.
use_mcp_tool({
server_name: "confluence",
tool_name: "create_page",
arguments: {
space_key: "PROJ",
title: "New Project Plan",
content: "# Project Plan Q3
}
});
Sources
Related Articles
Docker Integration MCP Servers
Docker MCP servers provide interfaces for LLMs to interact with Docker containers and services. These servers enable AI models to manage containers, handle image operations, and assist with Docker infrastructure tasks.
Chroma MCP Server
Chroma MCP servers enable AI models to interact with the Chroma embedding database for vector search, collection management, and document operations.
Slack MCP Server
Slack MCP servers enable AI models to interact with Slack workspaces, providing capabilities for channel management, message posting, thread handling, and team collaboration workflows.