Markdown to PDF MCP Server
Markdown to PDF MCP servers enable AI models to convert Markdown documents into PDF files, supporting syntax highlighting, custom styling, and flexible output options.
Overview
The Markdown2PDF MCP Server enables AI models to convert Markdown documents into PDF files. It's part of the Model Context Protocol (MCP) system, providing a standardized way to generate high-quality PDFs from Markdown content.
Created by:
Developed by 2b3pro
Key Features
Markdown to PDF Conversion
Convert Markdown documents to PDF files with a single commandCustom Styling & Syntax Highlighting
Apply custom CSS styles and enjoy syntax highlighting for code blocksFlexible Output Options
Configure paper format, orientation, borders, watermarks, and page numbersEfficient & Reliable
Utilizes Chrome's rendering engine for modern PDF generation and reliable resource loadingAvailable Tools
Quick Reference
| Tool | Purpose | Category |
|---|---|---|
create_pdf_from_markdown | Convert Markdown content to a PDF file | Conversion |
Detailed Usage
create_pdf_from_markdown▶
use_mcp_tool({
server_name: "markdown2pdf",
tool_name: "create_pdf_from_markdown",
arguments: {
markdown: "# Hello World\n\nThis is a test document.",
outputFilename: "output.pdf",
paperFormat: "a4",
paperOrientation: "portrait",
paperBorder: "1.5cm",
watermark: "DRAFT",
watermarkScope: "first-page",
showPageNumbers: true,
}
});
Required parameters: markdown (string), outputFilename (string).
Optional parameters: paperFormat (string, e.g., 'a4', 'letter'), paperOrientation (string, 'portrait' or 'landscape'),
paperBorder (string, CSS units), watermark (string, max 15 chars, uppercase),
watermarkScope ('all-pages' or 'first-page'), showPageNumbers (boolean).
Installation
{
"mcpServers": {
"markdown2pdf": {
"command": "npx",
"args": [
"-y",
"markdown2pdf-mcp@latest"
],
"env": {
"M2P_OUTPUT_DIR": "/path/to/output/directory"
}
}
}
}
Sources
Related Articles
Ollama Deep Researcher: AI Model for Web Search & LLM Synthesis
Ollama Deep Researcher MCP servers enable AI models to perform advanced topic research using web search and LLM synthesis, powered by a local MCP server.
Sentry MCP Server
Sentry MCP servers enable AI models to interact with Sentry's error monitoring and performance tracking platform, providing capabilities for analyzing errors, tracking performance, and assisting in debugging applications.
Moralis MCP Server
Moralis MCP servers enable AI models to query on-chain data — wallet activity, token metrics, NFTs, and dapp usage — via the Moralis Web3 APIs.