Filesystem Storage for MCP Servers
Learn how to implement local filesystem storage for Model Context Protocol servers
Filesystem Storage Integration for MCP
Overview
Local filesystem storage provides a simple and direct way to store model context data for MCP servers. This guide covers implementing a filesystem-based storage provider that follows the MCP storage interface specification.
Prerequisites
- Node.js 18 or higher
- MCP server base implementation
- Read/write permissions for the storage directory
Installation
npm install fs-extra
Implementation
import { promises as fs } from 'fs';
import path from 'path';
import crypto from 'crypto';
class FilesystemStorage implements MCPStorageProvider {
private baseDir: string;
constructor(baseDir: string) {
this.baseDir = baseDir;
}
private getContextPath(contextId: string): string {
// Create hash-based subdirectories to prevent too many files in one directory
const hash = crypto.createHash('md5').update(contextId).digest('hex');
const subDir = hash.substring(0, 2);
return path.join(this.baseDir, subDir, `${contextId}.ctx`);
}
async storeContext(contextId: string, data: Buffer): Promise<void> {
const filePath = this.getContextPath(contextId);
await fs.mkdir(path.dirname(filePath), { recursive: true });
await fs.writeFile(filePath, data);
}
async retrieveContext(contextId: string): Promise<Buffer> {
const filePath = this.getContextPath(contextId);
try {
return await fs.readFile(filePath);
} catch (error) {
if (error.code === 'ENOENT') {
throw new Error('Context not found');
}
throw error;
}
}
async deleteContext(contextId: string): Promise<void> {
const filePath = this.getContextPath(contextId);
try {
await fs.unlink(filePath);
} catch (error) {
if (error.code !== 'ENOENT') {
throw error;
}
}
}
}
Configuration
const storage = new FilesystemStorage('/path/to/storage');
const mcpServer = new MCPServer({
storage
});
Error Handling
try {
await storage.storeContext('model-123', contextBuffer);
} catch (error) {
if (error.code === 'ENOSPC') {
console.error('Disk space full');
} else if (error.code === 'EACCES') {
console.error('Permission denied');
} else {
console.error('Storage error:', error);
}
}
Best Practices
-
Directory Structure
- Use hashed subdirectories to distribute files
- Implement regular cleanup of temporary files
- Set appropriate file permissions
-
Performance
- Use asynchronous operations
- Implement caching for frequently accessed contexts
- Monitor disk space usage
-
Data Integrity
- Implement file checksums
- Use atomic write operations
- Regular backup of storage directory
Monitoring Implementation
class MonitoredFilesystemStorage extends FilesystemStorage {
async storeContext(contextId: string, data: Buffer): Promise<void> {
const startTime = Date.now();
try {
await super.storeContext(contextId, data);
metrics.recordStorageOperation('write', Date.now() - startTime);
metrics.gaugeStorageSize(await this.getCurrentStorageSize());
} catch (error) {
metrics.recordStorageError('write');
throw error;
}
}
private async getCurrentStorageSize(): Promise<number> {
// Implementation to calculate total storage size
// ...
}
}
Testing
describe('FilesystemStorage', () => {
const testDir = path.join(__dirname, 'test-storage');
let storage: FilesystemStorage;
beforeEach(async () => {
await fs.mkdir(testDir, { recursive: true });
storage = new FilesystemStorage(testDir);
});
afterEach(async () => {
await fs.rm(testDir, { recursive: true, force: true });
});
it('should store and retrieve context', async () => {
const contextId = 'test-123';
const testData = Buffer.from('test data');
await storage.storeContext(contextId, testData);
const retrieved = await storage.retrieveContext(contextId);
expect(retrieved.toString()).toBe(testData.toString());
});
});
Security Considerations
-
File Permissions
- Set restrictive file permissions (0600)
- Run process with minimal required privileges
- Sanitize context IDs to prevent path traversal
-
Data Protection
- Implement encryption at rest
- Secure deletion of sensitive contexts
- Regular security audits
Performance Optimization
- Caching
class CachedFilesystemStorage extends FilesystemStorage {
private cache: Map<string, Buffer>;
private maxCacheSize: number;
constructor(baseDir: string, maxCacheSize: number = 100) {
super(baseDir);
this.cache = new Map();
this.maxCacheSize = maxCacheSize;
}
async retrieveContext(contextId: string): Promise<Buffer> {
if (this.cache.has(contextId)) {
return this.cache.get(contextId)!;
}
const data = await super.retrieveContext(contextId);
if (this.cache.size >= this.maxCacheSize) {
const firstKey = this.cache.keys().next().value;
this.cache.delete(firstKey);
}
this.cache.set(contextId, data);
return data;
}
}
Resources
Related Articles
Vector Databases in MCP
Vector databases play a crucial role in the Model Context Protocol (MCP) by enabling efficient storage, retrieval, and querying of high-dimensional vector representations. These representations are often derived from machine learning models and are essential for tasks such as similarity search, recommendation systems, and semantic understanding.
Tiktok MCP Server
Tiktok MCP Server
Strava
Strava