Ollama Deep Research MCP Servers
Implement Ollama-powered deep research capabilities in MCP servers for document analysis, citation management, and research synthesis.
Ollama Deep Research MCP Servers
Overview
Ollama Deep Research MCP servers provide interfaces for LLMs to interact with research tools, document analysis, and knowledge extraction capabilities. These servers enable AI models to perform deep research tasks while maintaining efficiency and accuracy.
Core Components
Research Server
class OllamaResearchServer extends MCPServer {
capabilities = {
tools: {
'analyzeDocument': async (params) => {
// Analyze research documents
},
'extractCitations': async (params) => {
// Extract and validate citations
},
'synthesizeFindings': async (params) => {
// Summarize research findings
}
},
resources: {
'knowledgeBase': async () => {
// Access research database
}
}
}
}
Implementation Examples
Document Processing
class DocumentProcessor extends MCPServer {
async initialize() {
return {
tools: {
'parseDocument': this.handleDocumentParsing,
'crossReference': this.performCrossReferencing,
'generateSummary': this.createResearchSummary
}
};
}
private async handleDocumentParsing({ document, format }) {
// Implement document parsing logic
}
}
Configuration Options
ollama:
models:
- name: "research-assistant"
context: 8192
- name: "citation-analyzer"
context: 4096
research:
maxDepth: 3
citationStyle: "APA"
languageSupport: ["EN", "DE", "FR"]
Security Guidelines
-
Data Protection
- Document encryption
- Source verification
- Access logging
-
Citation Integrity
- Source validation
- Reference checking
- Plagiarism detection
Common Use Cases
-
Literature Review
- Systematic review
- Meta-analysis
- Bibliography management
-
Knowledge Extraction
- Key concept identification
- Relationship mapping
- Trend analysis
-
Research Synthesis
- Finding aggregation
- Gap analysis
- Recommendation generation
Best Practices
-
Document Processing
- Format handling
- Metadata extraction
- Version control
-
Knowledge Management
- Topic organization
- Reference linking
- Citation tracking
Testing Strategies
-
Analysis Testing
- Content extraction
- Citation validation
- Summary accuracy
-
Integration Testing
- Database connectivity
- API compatibility
- Performance benchmarking
Related Articles
Stockflow
Stockflow
Autumn MCP Server Guide
A comprehensive guide to integrating Autumn with MCP servers, enabling AI models to interact with productivity tracking, time management, and workflow optimization through standardized interfaces.
Retrieval Augmented Thinking MCP Servers
Learn how to implement Retrieval Augmented Generation (RAG) in MCP servers to enhance AI responses with relevant information from external knowledge bases.